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Repeat dose NRPT (nicotinamide riboside and pterostilbene)
increases NAD™ levels in humans safely and sustainably: a
randomized, double-blind, placebo-controlled study

Ryan W. Dellinger’, Santiago Roel Santos', Mark Morris', Mal Evans?, Dan Alminana’, Leonard Guarente'? and Eric Marcotulli’

NRPT is a combination of nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD* precursor vitamin found in milk,
and pterostilbene (PT), a polyphenol found in blueberries. Here, we report this first-in-humans clinical trial designed to assess the
safety and efficacy of a repeat dose of NRPT (commercially known as Basis). NRPT was evaluated in a randomized, double-blind, and
placebo-controlled study in a population of 120 healthy adults between the ages of 60 and 80 years. The study consisted of three
treatment arms: placebo, recommended dose of NRPT (NRPT 1X), and double dose of NRPT (NRPT 2X). All subjects took their
blinded supplement daily for eight weeks. Analysis of NAD" in whole blood demonstrated that NRPT significantly increases the
concentration of NAD" in a dose-dependent manner. NAD* levels increased by approximately 40% in the NRPT 1X group and
approximately 90% in the NRPT 2X group after 4 weeks as compared to placebo and baseline. Furthermore, this significant increase
in NAD" levels was sustained throughout the entire 8-week trial. NAD" levels did not increase for the placebo group during the trial.
No serious adverse events were reported in this study. This study shows that a repeat dose of NRPT is a safe and effective way to

increase NAD™ levels sustainably.
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INTRODUCTION

The maintenance of efficient cellular metabolism has been shown
to play a pivotal role in the prevention of age-associated
pathologies and in regulating longevity. Metabolic function is
dependent on critical choreography between coenzymes and
signal transducing proteins acting as integral metabolism sensors.
A prime example is the coenzyme nicotinamide adenine
dinucleotide (NAD™), and the family of proteins called sirtuins.”
NAD" has a canonical role in facilitating hydrogen transfer in key
metabolic pathways, such as the conversion of NAD* to NADH for
mitochondrial metabolism and subsequent ATP synthesis, which is
the energy currency of cells. The sirtuin family of enzymes (SIRT1-
7) are NAD*-dependent deacylases and key regulators of aging.>*
Beyond acting as a cosubstrate for sirtuins, NAD" is also a
cosubstrate for other key enzymes, notably poly (ADP-ribose)
polymerases (PARPs), which are involved in DNA repair.4 NAD*-
dependent enzymes are involved in a wide range of activities
including DNA damage repair, mitochondrial function, chromoso-
mal integrity, gene expression, epigenetic and posttranslational
modifications, and calcium signaling.” Importantly, when NAD* is
used as a cosubstrate it is consumed (hydrolyzed), which
necessitates constant cellular NAD" biosynthesis through path-
ways that begin with precursors found in the diet, notably vitamin
B3. There are several forms of vitamin B3: nicotinic acid (NA),
nicotinamide (NAM), nicotinamide mononucleotide (NMN),
and nicotinamide riboside (NR). NR has emerged as an efficient
vitamin B3 NAD" precursor.® Specifically, when NR was examined
head-to-head with NA and NAM in mice, NR exhibited unique

pharmacokinetics that resulted in significantly higher peak NAD*
concentrations in the liver as well as producing significantly higher
levels of several intermediate NAD* precursors including NMN,
nicotinic acid mononucleotide (NaMN), and nicotinic acid adenine
dinucleotide (NAAD).

Numerous studies have demonstrated that NAD* levels
decrease with age,®® including two human studies that report
reduced levels in the skin'® and the brain."" As NAD" levels
decline with age, NAD" precursors may have significant value in
raising such levels and maintaining robust health. The efficacy of
NAD™ precursors in preventing age-related health problems has
been borne out in several recent animal studies.*'? One study
demonstrated that mitochondrial dysfunction, a hallmark of aging,
was caused by declining NAD* levels in old animals leading to a
breakdown of communication between the nucleus and the
mitochondria." Remarkably, one week of NMN administration in
old mice was shown to reverse the observed mitochondrial
dysfunction in a manner requiring the sirtuin, SIRT1.

In another study, NR was shown to reverse the decline in the
number and function of adult stem cells in old wild-type mice."
NR was also shown to significantly increase the lifespan of these
animals.'* Extension of lifespan and health span by NR was also
demonstrated in a mouse with DNA repair defects,’>'® including a
model of Ataxia Telangiectasia, in which the ATM gene was
knocked out.'® In these models, NR replenishment of NAD* levels
led to improved quality of mitochondria and enhanced DNA
repair.

NR treatment has also been shown to boost oxidative
metabolism in mice and to protect them from high-fat diet-
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induced obesity.'”'® NR-supplemented mice challenged with a
high-fat diet did not gain as much weight as the control mice, and
displayed increased oxidation of fatty acids, improved insulin
sensitivity and increased energy expenditure. In addition, NR
increased mitochondrial biogenesis in muscle tissue and
enhanced the endurance performance of these animals. Further-
more, mice supplemented with NR showed increased capacity to
maintain body temperature during cold exposure.'”

NAMPT is the rate-limiting step in the NAD" salvage pathway,
which generates NAD" by combining nicotinamide and phos-
phoribosyl pyrophosphate. Muscle-specific NAMPT knockout mice
showed an 85% decline in intramuscular NAD" levels and
accelerated age-related muscle degeneration resulting in a loss
of strength and endurance.' Similarly, old wild-type mice also
showed reduced levels of NAMPT and muscle decline. Adminis-
tration of NR rapidly ameliorated the aging-triggered muscle
degeneration resulting in increased strength and endurance in
both the NAMPT knockout and old wild-type mice. Furthermore,
NR was shown to be more efficient than NAM in this model."®

The first human clinical trial using NR, a crossover study on
twelve healthy adults, demonstrated that a single dose of NR
significantly increased NAD™ levels in blood over a 24-hour period.
This study also showed increases in the NAD" metabolome over
this time course.” However, the question remained whether
increases in NAD™ could be sustained over longer time courses by
daily administration of NR.

NRPT is a combination of NR and pterostilbene (PT), a naturally
occurring analog of the polyphenol resveratrol, which has been
found to be a potent SIRT1 activator.’® Despite the reported
physiological beneficial effect of resveratrol, its bioavailability in
humans is poor.?' PT exhibits greater bioavailability due to the
presence of two methoxy groups that allow it to have increased
lipophilic and oral absorption,**** as well as a longer half-life
due to reduced oxidation.>*?* Based on these considerations, the
combination of NR and pterostilbene is predicted to synergistically
support metabolic health through NR providing NAD™ to all seven
sirtuins and pterostilbene providing additional activation of SIRT1.
Sirtuins are known to mediate responses to nutritional and
environmental signals including the beneficial health effects of
calorie restriction.*?®%” In addition, NAD*-dependent activation
of sirtuins regulates important physiological processes such as
circadian rhythm, glucose and fat metabolism, and normal
aging.?

Therefore, we investigated the safety and tolerability of NRPT as
well as its efficacy in sustaining elevated NAD" levels in an initial
randomized, double-blind, placebo controlled trial of 120 heathy
adults between the ages of 60 and 80. This trial represents the first
repeat dose trial for NR as well as the first test of the combination
of NR and PT in humans. We report that NRPT increases NAD*
levels safely and sustainably.

RESULTS

Trial overview

The safety and efficacy of NRPT, a supplement combining
nicotinamide riboside and pterostilbene, was investigated in a
population of 120 participants in a randomized, double-blind,
placebo-controlled repeat dose clinical trial. This trial consisted of
three arms of 40 healthy subjects between the ages of 60 to 80:
placebo, NRPT at recommended dose (NRPT 1X; 250 mg of NR plus
50 mg of PT), and NRPT at double dose (NRPT 2X; 500 mg of NR
plus 100 mg of PT). Each subject took their assigned treatment
orally, at breakfast, daily for 8 weeks. Blood was taken at baseline,
at 4 weeks and at 8 weeks to evaluate safety and efficacy in raising
NAD* concentrations in whole blood with a 30-day follow-up after
supplementation was stopped. A schematic of the study is shown
in Fig. 1a.
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All participants were analyzed in the Intention-to-Treat Popula-
tion (ITT), with 40 participants in the NRPT 1X group, 38 in the
NRPT 2X group, and 40 in the placebo group. Data collected from
the ITT group was analyzed for all safety endpoints. One-hundred
and thirteen participants (113) were analyzed in the Per Protocol
Population (PP), with 40 participants in the NRPT 1X group, 33 in
the NRPT 2X group, and 40 in the placebo group (Fig. 1b). Seven
participants were removed from the total population for the Per
Protocol analysis; one participant was incorrectly enrolled into the
study, three participants withdrew consent, two participants had
low investigational product compliance (compliance less than
70%), and one participant was not compliant with study
procedures. Data from the PP group was analyzed when a
confounding error would clearly be introduced due to lack of
protocol compliance. At randomization, participants were well
matched between groups and compliance in all groups exceeded
94% (Fig. 1b). The ITT population was used for all analysis except
NAD* and mobility analyses, where the PP population was
analyzed to eliminate error from non-compliance.

Demographics of participants in the NRPT 1X, NRPT 2X, and
placebo group were well matched for age, gender, BMI, smoking
status, race, and ethnicity (Table S1). Of 120 randomized
participants in the safety population, 87% identified themselves
as western European white, between 60 and 79 years of age with a
BMI of 18 to 35 kg/m?. Sixty-one percent were non-smokers and
68% were female. Use of alcohol was generally evenly distributed
between the participants with 91% being either occasional,
weekly or daily users but none classified as heavy users (Table S1).

Adverse events

A total of 66 adverse events (AEs) were reported by 45 participants
(Table S2). Of these, 18 AEs were reported by 13 participants in the
placebo group, 25 reported by 15 participants in the NRPT 1X
group, and 23 reported by 17 participants in the NRPT 2X group.
There were no significant differences in the incidence of AEs
among groups. There was one AE mild in intensity assessed as
possibly related to the placebo product (pruritus), one AE mild in
intensity assessed as possibly related to NRPT 1X (nausea), and five
AEs (moderate fatigue, mild headache, moderate dyspepsia,
moderate abdominal discomfort and diarrhea) reported by five
participants in the NRPT 2X group (Table 1). Four of these AEs
were assessed as possibly related to NRPT 2X, while one AE
(diarrhea) was assessed as probably related to NRPT 2X. All other
AEs were classified as unlikely or not related to the investigational
product. All participants reporting AEs recovered and there were
no serious AEs reported during this clinical study.

NRPT increases NAD™"

Whole blood was collected at baseline, day 30 and day 60 from all
subjects for subsequent NAD* analysis. Collection was at pH 5,
which led to red blood cell lysis but preserved NAD™ for analysis. A
GLP-compliant method was developed to analyze NAD" from
human whole-blood lysates by Liquid chromatography-mass
spectrometry (LC-MS/MS). As shown in Fig. 2, the placebo group
showed no increase of NAD* over the 60-day treatment period.
However, NAD* concentrations did significantly increase in a
dose-dependent manner at 30 days; NAD" levels increased
approximately 40% in the NRPT 1X group and approximately
90% in the NRPT 2X group relative to baseline (Fig. 2; Table S3).
The 40% increase in NAD* concentration observed in the NRPT 1X
group was sustained at 60 days. The increase in NAD™ levels seen
in the NRPT 2X group was sustained at approximately 55% over
baseline at 60 days. This increase remained significantly higher
than the NRPT 1X group at 60 days (Fig. 2; Table S3). The within-
group increases in the NRPT 1X and NRPT 2X groups at day 30 and
day 60 were significant, as were the differences between groups
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Clinical Trial Design

Baseline Daily NRPT 1X (250 mg NR and 50 mg of pterostilbene) n=40
Day 0

Daily NRPT 2X (500 mg NR and 100 mg of pterostilbene) n=40

Screening
(V1)
Placebo n=40
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€---------- | >
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- = Intervention Period

Trial Flow Diagram
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=3 N =120
SCREENING FAILURES PASSED SCREENING
N = 10 Did not meet inclusion criteria
N =17 Met exclusion criteria
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N=40 N=40 N=40
Enrolled to Enrolled to Enrolled to
Placebo NRPT 1X NRPT 2X
Baseline I I i
IN = 0 Dropout N = 0 Dropout N = 1 Protocol Violation
N = 1 Withdrew Consent
Day 30 [ I [
[ oww ] | | |
IN = 0 Dropout N = 0 Dropout N = 2 Withdrew Consent
N = 1 Withdrew due to
compliance
Day 60 | { I _i

Number of Participants completing the study: N = 115
Number of Participants Included in the ITT analysis: N = 118
Number of Participants Included in the PP analysis: N = 113

Fig. 1 Clinical trial diagrams. a Clinical Trial Design diagram. Schematic depicting the randomized, double-blind, placebo controlled, three-
arm parallel group study. The study consisted of a single eight-week study period. Clinic visits occurred at day 0 (baseline), day 30, and day 60.
Subjects were asked to fast 12 h prior to each clinic visit. Each clinic visit consisted of a physical exam including as well as blood draws to
evaluate safety and efficacy endpoints of the trial. b Clinical Trial Flow Diagram. Schematic depicting recruitment and disposition of study
participants. A total of 159 potential subjects were screened to successfully enroll 120 eligible subjects and randomize them 1:1:1 to the three
arms. One-hundred fifteen subjects completed the 60-day study
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Fig. 2 NRPT increases NAD" levels. Total NAD* levels were
measured in whole blood from all subjects at day 0 (baseline), day
30, and day 60. Graph depicts change from baseline NAD"
concentration (pg/ml) for Placebo (blue diamonds), NRPT 1X (red
squares) and NRPT 2X (green triangles). Data shown is the mean +
standard deviation of the mean for each time point
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at those time points (Table S3). Thus, NRPT significantly increases
NAD* levels in a sustained way.

AT aq NRPT 1X and liver enzymes

desed Liver enzymes in blood were also determined as a measure of
health of that organ. Liver tests were within normal ranges at
baseline for all subjects. There were no changes in the liver
function tests for any group (placebo, NRPT 1X, or NRPT 2X) except
that a significant decrease was observed in the ALT (alanine
transaminase) test at 30 and 60 days within the NRPT 1X as
compared to baseline (Table 2). A similar trend that did not reach
significance was also observed for AST (aspartate transaminase).
Since the presence of liver enzymes in the blood indicates defects
in liver health, the data suggest that NRPT 1X may improve liver
function in healthy adults. We intend to pursue subsequent
human studies to further investigate the role of NRPT on liver
health.
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NRPT 1X and blood pressure

Vital signs, heart rate, and blood pressure were measured in
participants. There were no changes relative to baseline at day 30
or 60 in heart rate or blood pressure in any group except in the
NRPT 1X group, where diastolic blood pressure decreased
significantly at day 60 (Table S4).

=40)

Placebo (N
Number of
AEs

n

0

0

0

1

1

NRPT and mobility

To assess mobility in the study, a 30-second chair stand test and 6-
minute walk test were employed. The 30-second chair stand test is
used to determine lower body strength in an elderly population
where higher numbers are considered beneficial to the individual.
The 6-minute walk test measures distance (in meters) an
individual can walk at a normal pace for 6 min. Interestingly, the
NRPT 2X group showed a significant within-group increase in
mobility in both the 30-s chair test (Table S5) and the 6-min walk
test (Table S6) at 60 days compared to baseline. There were no
differences observed in the placebo or NRPT 1X group.

NRPT and other blood markers

After 60 days of daily supplementation, there was no significant
difference between groups in hematology and clinical chemistry
parameters in participants. Specifically, no significant differences
between NRPT 1X, NRPT 2X or placebo were observed in
hemoglobin, hematocrit, WBC, RBC, mean corpuscular volume,
mean corpuscular hemoglobin, counts of platelet, neutrophil,

Total number of possibly, probably, or most probably related AEs and number of participants experiencing at least one AE separated by system organ class category

@ Between group comparisons were made using the Chi-Squared test

General disorders and administration site conditions
Probability values p <0.05 are statistically significant

Skin and subcutaneous tissue disorders
n number

Gastrointestinal disorders
Nervous system disorders
Overall adverse events

Table 1.
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Table 2. Liver function tests of all participants (N = 120)

Placebo NRPT 1X NRPT 2X Between group

Mean +SD (n) Mean +SD (n) Mean +SD (n) p-value
Bilirubin concentration (umol/L)
Day 0 Baseline 11.6 + 3.7 (40) 11.2+ 5.8 (40) 11.3+ 4.4 (40) 0.697%°
Day 30 11.7 + 4.8 (40) 114 + 64 (40) 11.1 + 3.9 (39) 0.740%°
Day 60 End of Study 11.4 + 4.1 (40) 10.5 + 4.6 (40) 11.6 + 4.2 (37) 0.344%°
Change from Day 0 to Day 30 0.14 + 2.96 (40) 0.19+ 2.71 (40) -0.45+ 2.79 (39) 0.641>¢
Change from Day 0 to Day 60 —-0.1 + 3.0 (40) -0.7 + 3.2 (40) -0.2 + 3.8(37) 0.635%¢
Aspartate transaminase (U/L)
Day 0 Baseline 25.5+6.3 (40) 244 + 9.5 (40) 239 + 5.9 (40) 0.328¢
Day 30 26.1 +5.2 (40) 23.8 + 8.6 (40) 25.1 + 5.6 (39) 0.004¢
Day 60 End of Study 26.4 +6.1 (40) 23.6 + 8.7 (40) 253 + 5.7 (37) 0.003¢
Change from Day 0 to Day 30 0.6 + 3.9 (40) —-0.6 + 3.8 (40) 1.1 + 3.4 (39) 0.047¢
Change from Day 0 to Day 60 0.8+ 5.7 (40) —-0.8 + 4.5 (40) 0.9 + 3.3 (37) 0.041¢
Alanine transaminase (U/L)
Day 0 Baseline 23.4+8.3 (40) 21.6 + 6.3 (40) 219 + 7.7 (40) 0.584¢
Day 30 24.4 +9.3 (40) 19.9 + 54 (40) 224 + 7.2 (39) 0.033¢
Day 60 End of study 25.1+11.6 (40) 19.7 + 5.1 (40) 21.8 + 7.3 (37) 0.039¢
Change from Day 0 to Day 30 1.0+ 5.6 (40) -1.7 + 5.2 (40)¢ 04 + 5.1 (39) 0.032¢
Change from Day 0 to Day 60 1.6+ 7.8 (40) -1.9 + 4.8 (40)¢ -0.5 + 5.0 (37) 0.127¢
Gamma- glutamyltransferase (U/L)
Day 0 Baseline 22+13 (39) 28 + 56 (40) 17 + 11 (40) 0.079¢
Day 30 24 +15 (40) 28 + 60 (40) 18 + 10 (39) 0.092¢
Day 60 End of study 25+ 18 (40) 27 + 56 (40) 18 + 11 (37) 0.125¢
Change from Day 0 to Day 30 1.8+6.5 (39) -0.5 + 9.2 (40) 1.1 + 4.0 (39) 0.237¢
Change from Day 0 to Day 60 2.6 +6.9 (39) -1.0 + 8.8 (40) 09 + 64 (37) 0.593¢
Probability values p <0.05 are statistically significant
? The logarithmic transformation was required to achieve normality
b Between group comparisons were made using ANOVA (no adjustment for baseline)
€ Between group comparisons were made using ANCOVA adjusting for baseline
d Between group comparisons were made using the non-parametric Kruskal-Wallis test
¢ Denotes significant within-group comparisons were made using the paired Student t-test

lymphocytes, monocytes, eosinophils, or basophils. Electrolytes
(sodium, potassium, and chloride) concentration and kidney
function, as measured by creatinine, was similar between groups
throughout the study (Table S7).

NRPT and lipids

Analysis of lipids showed across group differences in triglycerides,
but this was entirely due to a decline in the placebo group at day
30 and day 60. Levels of triglycerides within the NRPT 1X and
NRPT 2X group showed no significant changes from baseline at
day 30 or day 60. The decrease in triglycerides in the placebo
group at day 60 compared to baseline resulted in a significant
difference between the placebo and the NRPT 1X group at day 60
(Table 3). Total cholesterol and LDL-cholesterol showed within-
group increases at day 30 (NRPT 2X) and day 60 (NRPT 1X and
NRPT 2X) compared to baseline. The increase in total cholesterol in
the NRPT 1X group compared to the placebo group was not
significant at day 30 or day 60. The increase in LDL cholesterol in
the NRPT 1X group compared to the placebo group was
approximately 3% at day 30 and 3.5% at day 60. Larger increases
in total cholesterol and LDL cholesterol were observed in the NRPT
2X group. However, there were significant across group differ-
ences in total and LDL cholesterol at baseline mainly due to lower
levels in the placebo group, confounding the interpretation of the
study data.

Published in partnership with the Japanese Society of Anti-Aging Medicine

Thus, we stratified the three treatment groups by BMI and
reanalyzed the data (Table 4). Subjects in the NRPT 1X group with
normal BMI (18-25) showed no significant increases in LDL
cholesterol at day 30 or day 60. Subjects in the NRPT 2X group
with normal BMI did show increases in LDL cholesterol at day 30
and day 60. Subjects in the overweight category (BMI 25-32)
showed increases in LDL cholesterol at day 30 and day 60 in both
the NRPT 1X and NRPT 2X groups. However, overweight subjects
in the placebo group also showed a significant increase at day 60.
Overall, these findings suggest a small but significant increase in
cholesterol may occur at the normal dose of NRPT, at least for
people with a higher than normal BMI. Further studies are needed
with increased number of subjects to determine if the small
changes observed here are real or due to chance.

DISCUSSION

This study aimed to test NRPT in a rigorous placebo-controlled,
double-blind, and randomized 120-person human trial for safety
and efficacy. Earlier studies involving a small number of subjects
vouched for the safety of the ingredients of NRPT separately, but
were not placebo-controlled.”* This rigorous, larger trial showed
that AEs were mild and distributed across the NRPT and placebo
groups. Thus, NRPT is deemed to be well tolerated. The major
efficacy endpoint of the trial was NAD" concentration, which
drives activities of sirtuins and many other processes that promote

npj Aging and Mechanisms of Disease (2017) 17 17
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Table 3. Lipid profile of participants at baseline (Day 0), day 30, and day 60 in the ITT population (N =118)
Placebo NRPT 1X NRPT 2X Between group
Mean +SD (n) Mean +SD (n) Mean +SD (n) p-value
Triglyceride concentration (mmol/L)
Day 0 Baseline 1.24 +0.72 (38) 1.33 +£0.71 (39) 1.03 +0.38 (36) 0.145%P
Day 30 1.15 + 0.60 (40) 1.42 +0.93 (40) 1.03+0.39 (38) 0.038%°
Day 60 End of Study 1.11 + 0.67 (40) 1.48 +0.93 (40) 1.08 + 0.45 (38) 0.018%°
Change from Day 0 to Day 30 —0.09 + 0.40 (38) 0.01 +0.45 (39) 0.01 +0.27 (36) 0.427>¢
Change from Day 0 to Day 60 -0.12+0.38 (38)¢ 0.11 +0.49 (39)¢ 0.07 +0.30 (36) 0.023*¢
Total cholesterol concentration (mmol/L)
Day 0 Baseline 5.09 +0.84 (38) 5.58 +0.81 (39)¢ 521 +0.84 (36) 0.029%°
Day 30 5.10 + 0.89 (40) 5.78 +0.87 (40) 5.52+0.84 (38) 0.0022°
Day 60 End of Study 5.15+0.92 (40) 5.86 +0.85 (40) 5.70 +0.94 (38) <0.0013P
Change from Day 0 to Day 30 —0.02 + 0.39 (38) 0.13 +0.52 (39) 0.32 + 0.40 (36)¢ 0.002*€
Change from Day 0 to Day 60 0.05+ 0.53 (38) 0.22 +0.57 (39) 0.51 +0.48 (36)° <0.001%¢
High-density lipoprotein concentration (mmol/L)
Day 0 Baseline 1.71+0.54 (38) 1.61 +0.44 (39) 1.73+£0.51 (36) 0.589%°
Day 30 1.68 + 0.53 (40) 1.58 +0.42 (40) 1.74 £ 0.49 (38) 0.389%°
Day 60 End of Study 1.72 +0.56 (40) 1.53 +0.41 (40) 1.74 £ 0.49 (38) 0.157*P
Change from Day 0 to Day 30 —0.020 + 0.232 (38) —0.017 +0.153 (39) —0.003 +0.140 (36) 0.879*¢
Change from Day 0 to Day 60 0.010 +0.209 (38) —0.070 +0.194 (39) —0.009 + 0.138 (36) 0.113%¢
Low-density lipoprotein concentration (mmol/L)
Day 0 Baseline 2.81+0.81 (38) 337 +0.67 (39)° 3.01 + 0.80 (36) 0.004%°
Day 30 2.90 +0.81 (40) 3.56 +0.73 (40) 331 + 0.78 (38) <0.001%P
Day 60 End of Study 2.93 +0.80 (40) 3.65+0.72 (40) 3.47 + 0.84 (38) <0.0012°
Change from Day 0 to Day 30 0.04 +0.36 (38) 0.15+0.44 (39) 0.32 + 0.35 (36)¢ 0.004%¢
Change from Day 0 to Day 60 0.10+0.38 (38) 0.24 +0.43 (39)¢ 0.48 + 0.40 (36)¢ <0.001%¢
Probability values p <0.05 are statistically significant
? The logarithmic transformation was required to achieve normality
b Between group comparisons were made using ANOVA (no adjustment for baseline)
© Between group comparisons were made using ANCOVA adjusting for baseline
4 Denotes significant within-group comparisons were made using the paired Student t-test
¢ Denotes significant difference compared to placebo as assessed by the Tukey-Kramer post-hoc test
Table 4. Stratifying change in LDL at 30 and 60 days by BMI (normal, overweight, obese) in the ITT Population (N=118)
Placebo NRPT 1X NRPT 2X
Mean +SD (n) Mean +SD (n) Mean +SD (n)
30 Days 60 Days 30 Days 60 Days 30 Days 60 Days
Normal BMI 0.10+0.35 (12) 0.10+0.33 (12) 0.18+0.38 (10) 0.10+0.40 (10) 0.23 + 0.40**(13) 0.64 + 0.49**(13)
Overweight BMI 0.04 +0.16 (13) 0.16 + 0.28*(13) 0.27 + 0.47**(16) 0.46 + 0.43**(16) 0.33 +0.27**(14) 0.50 + 0.30**(14)
Obese BMI —-0.1+0.34 (13) 0.03 +0.48 (13) —0.03 +£0.40 (12) 0.13+0.39 (12) 0.24 + 0.44(8) 0.45 + 0.43%(8)
Note: Red denotes significant difference observed within-group using the paired Student t-test
*p<0.05
**p <£0.01

cellular health and decline with age. Thus, an increase in NAD"
stands as a key component of how NRPT is envisaged to improve
human health. In a small trial of 12 subjects, a single dose of NR
was found to raise NAD" levels in white blood cells over a time
course of several hours.” Our trial monitored NAD™ levels in whole
blood at day 0 (baseline), day 30, and day 60. There was a robust
40% (NRPT 1X) and 90% (NRPT 2X) increase in NAD* at day 30
over baseline, and this was fully sustained at day 60 in the NRPT
1X group and partially declined to 55% over baseline in the NRPT
2X group. The placebo group did not show changes in NAD*
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levels. It is not clear why the NRPT 2X group showed the partial
decline at 60 days, but it is possible that extraordinarily high levels
of NAD* can induce homeostatic mechanisms to restrain further
increases. One possible mechanism is induction of NAD*
degrading enzymes, such as CD38.

A previous report has established that NR is metabolized
similarly to nicotinamide in humans with the exception of two
additional metabolites generated by NR; namely NAMN and NAAD
(both known NAD™ precursors).” Furthermore, NR exhibits a similar
toxicity profile to nicotinamide in rats at very high doses (e.g.,
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3000 mg/kg NR).?® Since nicotinamide has been studied as a
dietary supplement in humans for decades, excellent safety data
on long term use is available. The EU Scientific Committee on
Food has established an upper limit of 900 mg/day as safe.® Thus,
the nicotinamide safety information coupled with our safety data
presented here demonstrates that consumption of NR is safe for
daily use at reasonable doses.

A series of blood parameters were also measured in all subjects,
and most showed no significant changes during the trial.
However, three measurements did show differences that reached
statistical significance. First, diastolic blood pressure was signifi-
cantly reduced at day 60 in the NRPT 1X group. This finding is
consistent with an earlier small trial showing that pterostilbene
alone caused a small decrease in diastolic blood pressure.?
Second, the liver enzyme ALT showed a significant decrease in the
NRPT 1X group at both day 30 and day 60. A second liver enzyme,
AST, showed the same trend at both day 30 and day 60, which did
not reach significance. Third, a small increase in total and LDL
cholesterol was observed in the NRPT 1X group at day 60 (about
3% over placebo) and larger increases in the NRPT 2X groups.
When subjects were stratified by BMI, changes in cholesterol in
the NRPT 1X group were absent in the normal BMI subgroup and
were confined to the overweight subgroup. One confounding
factor in interpreting the cholesterol data is that subjects showed
significant differences in total and LDL cholesterol at baseline, due
to the vagaries in the randomization of subjects. Furthermore, the
normal biological variation for LDL for an individual has been
estimated to be 9%.%° Thus, it is possible only natural variations in
LDL were observed in this trial.

Changes in the liver enzymes and cholesterol biosynthesis draw
our attention to possible effects of NRPT on the liver. One
possibility is that NRPT 1X improves liver health (e.g., by reducing
hepatocyte cell death) and the healthier liver shows improved
functions, including modestly more synthesis of cholesterol. It is
unclear if the small increase in LDL cholesterol is due to an
increase in particle size, which would be benign with regards to
cardiovascular health. As an example, omega-3-fatty acids raise
LDL cholesterol via increases in particle size, but may be beneficial
for cardiovascular health.3'*? Determination of apoB and apoC3
levels may shed light on this question. Another possibility
for the small increases in cholesterol relates to the known
function of SIRT1 in promoting reverse cholesterol transport from
cells. If NRPT 1X upregulates SIRT1 as expected, an increase in
reverse cholesterol transport (e.g., export from cells) could account
for the slightly higher levels of cholesterol in blood. In this case,
the prognosis would be positive, since lower cholesterol in
macrophages should slow their progression to foam cells, which
are the initiators of atherosclerotic plaques. Future trials will be
necessary to determine whether the cholesterol (and ALT) effects
are reproducible.

With respect to mobility, the finding that NRPT 2X group
demonstrated significant increase in both the 30-second chair
stand and the 6-min walk test at 60 days suggests that prolonged
supplementation with NRPT may support overall muscle health
and/or energy in an older population. While encouraging, further
study is warranted to elucidate mechanisms behind this observed
increase in mobility. These studies would include a larger study
population observed for a longer period of time to reduce the
possibility of seeing correlations by chance.

A tangible strength of this study is in the demonstration that
NAD* levels in whole blood can be significantly increased in
humans in a safe and sustainable way by oral supplementation
with NRPT. Limitations of this study include that only an older
population was examined and that potentially promising results
from secondary and exploratory endpoints (with the exception of
NAD" levels) were not sufficiently powered to make unequivocal
conclusions. Still, this study represents an important first step that
future clinical studies can build upon.
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In summary, we have conducted the first placebo-controlled,
randomized and double-blind human trial on NRPT and found
that it is well tolerated and significantly raises NAD* levels in
circulating blood in a sustained way. Other parameters measured
in the trial provide a foundation for future trials, for example, by
suggesting that NRPT may have salutary effects on liver function
and mobility. We note that there is ample preclinical data in
mice and rats that SIRT1 activation, including activation by
polyphenols and by NAD* precursors, has beneficial effects on
liver function,>>33* providing further impetus to conduct follow-
up trials. The preclinical data also shows beneficial effects of NAD*
precursors and polyphenols on muscle disorders, diabetes,
and cardiovascular, and brain health. Whether some of these
benefits will be observed in humans is a question now open to
investigation.

METHODS
Clinical trial

This human clinical trial was conducted in accordance with the ethical
principles that have their origins in the Declaration of Helsinki and its
subsequent amendments (clinical trials.gov identifier NCT02678611) This
study was reviewed by the Natural and Non-prescription Health Products
Directorate (NNHPD), Health Canada and a research ethics board. Notice of
authorization was granted on 11 December 2015 by the NNHPD, Ottawa,
Ontario and unconditional approval was granted on 23 December 2015 by
the Institutional Review Board (IRB Services, Aurora, Ontario)

This study was a randomized, double-blinded, placebo-controlled study
carried out at three sites. The testing sites were in London, Ontario
(Canada), Orlando, Florida, and Irvine, California. The intervention phase
was 8 weeks with a 30-day follow-up period. All participants that met
inclusion and not exclusion criteria at screening were randomized into
three arms: placebo, recommended dose of NRPT (NRPT 1X), and double
the recommended dose of NRPT (NRPT 2X). Study recruited subjects
beginning in January 2016 and had completed the in-human phase of the
trial by July 2016 after full enrollment and enough time for all subject to
complete protocol.

The primary objective of this study was to evaluate the safety and
tolerability of two doses of NRPT in elderly participants during and after
eight weeks of treatment. Safety parameters measured included a
standard clinical checkup, self-reported AEs, complete blood count (CBC),
electrolytes (Na, K, Cl), kidney function (creatinine), and liver function (AST,
ALT, GGT and bilirubin). Secondary objectives of the study included
evaluations of potential benefits of NRPT in increasing the concentration of
NAD" in the blood and improving lipid metabolism.

Participants

The inclusion criteria were as follows: males and females between the ages of
60 and 80 with a body mass index (BMI) between 18 to 35 kg/m? (+1 kg/m?).
Participants agreed to avoid taking vitamin Bs (nicotinic acid, nicotinamide, or
nicotinamide riboside) supplements or multivitamins 14 days prior to
randomization and for the duration of the study period. Participants were
healthy as determined by laboratory results, medical history, and physical
examination. Individuals gave voluntary, written, and informed consent to
participate in the study.

Individuals were excluded if they met any of these characteristics:
unstable medical conditions, history of any significant chronic disease or
any clinically active illness within 3 months of study entry, history of renal
or liver impairment, any endocrine, inflammatory, cardiovascular, gastro-
intestinal, neurological, psychiatric, neoplastic or metabolic disease,
significant or untreated medical disorders including recent myocardial
ischemia or infarction, unstable angina, uncontrolled hypertension, AIDS,
malignancy, epilepsy, and recent cerebrovascular disease, recently
experienced a traumatic injury, infections or undergone surgery, history
of pellagra or niacin deficiency, currently taking lipid lowering drugs, use of
natural health products containing nicotinamide riboside within 14 days
prior to randomization and during the study. Participants with a history of,
or current diagnosis of any cancer (except for successfully treated basal cell
carcinoma) diagnosed less than five years prior to screening were also
excluded. Volunteers with cancer in full remission more than five years
after diagnosis were accepted. Subjects were also excluded if they had
participated in any clinical trial with an investigational medicinal product
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within the past three months prior to the first dose in the current study,
alcohol use of more than two standard alcoholic drinks per day, history of
alcoholism or drug abuse within one year prior to screening, history of
significant allergies, allergy or sensitivity to any of the investigational
product ingredients, or used medicinal marijuana. Subjects were excluded
if they reported clinically significant abnormal laboratory results at
screening or were cognitively impaired and/or who are unable to give
informed consent were also excluded.

Intervention

The investigational product NRPT contained 125 mg of NR and 25 mg of
pterostilbene per capsule. Each capsule also contained the non-dietary
ingredients microcrystalline cellulose, silicon dioxide, magnesium stearate,
gelatin. Placebo capsules consisted of microcrystalline cellulose, silicon
dioxide, magnesium stearate, gelatin. During the intervention period, two
groups received the investigational supplement while the third group
received placebo capsules. All subjects took four capsules daily. All
participants received two bottles containing capsules (Bottle A and Bottle
B) and were instructed to take two capsules from each bottle daily. NRPT
1X arm was provided with Bottle A containing NRPT and Bottle B
containing placebo capsules; NRPT 2X arm was provided with Bottle A
containing NRPT and Bottle B containing NRPT capsules. The matched
placebo pills and the investigational product (NRPT) were provided by
Elysium Health (New York, NY).

Randomization and blinding

A randomization schedule was prepared using block randomization by an
unblinded person at the study site who was not involved in study
assessment. random allocation sequence was generated using www.
randomization.com. A random sequence of treatments was generated
using 20 blocks of 6 (use seed #12081 to pull on website). This random
sequence of treatments was then associated with a random permutation
of 120 numbers from 616,001 to 616,120 (use seed #7123). The
investigational product, NRPT, and placebo were sealed in identical
bottles, which were labeled per the requirements of ICH-GCP guidelines
and applicable local regulatory guidelines. The placebo capsules mimicked
the size, shape, and color of the investigational product capsules. The
investigational product was labeled by unblinded personnel at KGK
Synergize who were not involved in study assessments. All clinic staff
involved in product dispensing, collection of data, and monitoring charts
and analysis of outcomes remained blinded for the duration of the study.

Clinic visits

Eligible volunteers returned to the clinic in the morning, after a 12-hour
fast (no food or drink except water) for baseline assessments. A physical
exam was conducted where weight was measured and BMI calculated.
Resting blood pressure and heart rate measurements were also taken.
Fasting blood samples were collected for fasting glucose, lipid panel, hs-
CRP, CBC, electrolytes (Na, K, Cl), creatinine, AST, ALT, GGT, bilirubin, PBMC,
and NAD" analysis.

Sample collection and preparation for NAD" analysis

Prior to blood collection, 1 mL of 0.5 M perchloric acid (PCA) was aliquoted
to four cryogenic screw cap bottles with seals and placed on wet ice.
Fasting 4 mL whole-blood samples were collected in sodium citrate tubes
for analysis of nicotinamide adenine dinucleotide (NAD*). The tubes were
inverted gently four times and the placed immediately on wet ice. Whole-
blood aliquots of 0.1 mL of were then transferred to each cryovial and
gently inverted four times and then placed on wet ice. This treatment lysed
all the blood cells. Lastly, the screw caps were replaced and the tubes kept
on ice were then stored at —80 °C until analyzed.

NAD* analysis from whole-blood lysate

Samples were thawed and centrifuged at 13,000 rpm for 5min at room
temperature. In all, 0.11 mL of supernatant was transferred to 2.0 mL glass
HPLC injection vial. Then 100 puL of 0.5M PCA in water was added. Fifty
microliters of internal standard solution (5pg/mL of '3C5-nicotinamide
adenine dinucleotide in 0.5 M PCA) was then added followed by 0.5 mL of
0.5M PCA in water. Samples were capped and vortexed for 20s. Ten
microliters was then injected onto the LC/MS/MS to quantitate NAD™ using
an isotopically labeled d5-NAD" as an internal standard. Mobile phase A
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was 0.5% formic acid in water and mobile phase B was 0.5% formic acid in
acetonitrile. A linear gradient of 0-100%B was run and the mass spec was
set on positive ion mode looking for the transitions of 664.4 — 524.0
(NAD") and 669.4 — 529.3 (the internal standard).

Statistics

Numerical efficacy endpoints were formally tested for significance
between groups by analysis of covariance (ANCOVA). The dependent
variable was the value at end-of-study (day 60); the factor was the product
group, and the value at baseline (day 0) was the covariate. When the
omnibus ANCOVA and ANOVA p-values suggested at least one
mean difference was present, pairwise comparisons using the Tukey-
Kramer procedure were run. Significant efficacy of NRPT, relative to
placebo, was inferred if the pairwise comparisons were significantly
different from zero (p <0.05). Intractably non-normal data was formally
tested for significance between groups by the Kruskal-Wallis test. When
the omnibus Kruskal-Wallis p-values suggested at least one mean
difference was present, pairwise comparisons using the Bonferroni
adjusted Mann-Whitney tests were run. Significant efficacy of NRPT,
relative to placebo, was inferred if the pairwise comparisons were
significantly different from zero (p <0.05). A within-group analysis on
efficacy endpoints was done using a Student’s paired samples t-test or, in
instances of intractable non-normality, Wilcoxon sign rank test. All missing
values in the intent-to-treat (effectiveness) analysis was imputed with the
most recent previously-available value (LOCF, or “last-observation-carried-
forward” imputation). No imputation will be performed for missing values
of safety variables. No changes in methods of analysis were made after
unblinding occurred. However, sensitivity analysis was performed on all
datasets that included LOCF to ensure that imputation of missing values
did not significantly impact outcomes. Our sensitivity analysis did not find
a case where imputation altered the significance of an association (analysis
not shown).

Data availability statement

The datasets generated and/or analyzed during this study are available
from the corresponding author on reasonable request.
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